
Report: Visualizing and Mapping Ontologies in Ultrawrap
Cabrera, Guillermo

University of Texas at Austin
gcabrera@cs.utexas.edu

ABSTRACT

Details on the implementation of the graphical user interface

developed for the Ultrawrap project. The Google Web Toolkit

was used to develop the web application in conjunction with Jena

as the RDF API. The main objective of this work was that of

presenting an interface to the user for him/her to be able to

visualize the extracted schema from a relational database, as well

as the putative ontology generated from this schema. Finally, we

explore possibilities in ontology visualization and mapping.

Keywords
Semantic Web, Google Web Toolkit, Jena, Graphical User

Interface, ontology visualization, ontology mapping.

1. INTRODUCTION
The vision of the Semantic Web in which people are able to

connect and share data, first and foremost requires that the data be

easily available and that we have a lot of data. In past years there

has been an effort by Semantic Web evangelists including Tim

Berners Lee to encourage a wide array of entities (ex. government

and industry) to put data on the web in formats adherent to the

Semantic Web; this has had a big impact in many fields, and was

very evident in aftermath of the Haiti earthquake (2009) where

mappers from all over the world with the help of satellite imagery

and the OpenStreetMap[9] project were able to map roads,

refugee camps, hospitals, etc. thus, being the number one source

for aid workers during rescue efforts.

As we put more of this data on the web, efficiently storing it so

that it can be easily retrieved later using queries can be a problem.

This reason has set forth the ongoing work on triple stores [6] [1];

a framework used for storing and querying RDF data and

providing mechanisms for persistent store and access. These triple

stores are normally divided into: in memory, native and non

native, of which the native approach has gained popularity due to

good results on load times.

Unlike native stores which re-implement a databases engine, non-

native stores take a layered approach whereby an existing

database engines is used and then a query engine (SPARQL)

specific to RDF data is connected to the relational database

engine. An example of such approach is seen in [11]. Ultrawrap

trivializes the process of putting data on the Semantic Web by

using the existing SQL infrastructure to allow it to be queried

using SPARQL.

In order to have the Relational Database (RDB) ready to accept

SPARQL queries a few processes need to take place: First, the

schema information for the database is retrieved and used to

create a Putative Ontology (PO). Then, this PO is used to create

views representing the triples of the data in the RDB. With these

views, the RDB is now ready to accept SPARQL queries, by using

a SPARQL to SQL translator and finally relying on the existing

SQL optimizer to select the most efficient query plan to access

data in RDB.

At this point, the PO is available in the Semantic Web, however,

one must remember that this PO was generated based on the

schema for the RDB which might not make use of a standard

vocabulary, thus, limiting its visibility on the semantic web. This

where Domain Ontologies (DO) are of importance, in that they

define a standard vocabulary for a certain discipline, as such,

individuals working in that discipline can model or map their data

using the DO. For instance, let us take a RDB schema from a

small social networking site and assume it has a table named

“individual” where it has attributes fName and lName, this means

that somebody running a SPARQL query against the PO

generated from this schema must be aware of such names, a

difficult task for someone working outside of the social

networking site. Nevertheless, if the administrator maps its PO to

a DO such as Friend Of A Friend (FOAF) that defines a dictionary

of terms for people and the things they make and do [4], more

people could query and retrieve information given that they also

know of the FOAF vocabulary.

Doing a mapping as in the case above could be done

automatically, yet, this raises interesting problems which will

briefly be discussed in following sections. Thus, it is important

that the administrator take part in this mapping process since it is

him/her who best knows the data and whether or not it maps to a

certain concept in a DO. To do so, an administrator must be able

to visualize the ontologies and then perform the necessary

mappings. In addition, an administrator or organization might be

constrained in the type of data it can publish and might need to

filter out tables or attributes that should not be part of the PO for

privacy or security issues.

In this project we focus on a Graphical User Interface (GUI) that

serves as an entry point for an administrator to interact with the

Ultrawrap project; through this GUI we provide a way to visualize

the RDB schema, filter out tables and attributes, visualize

ontologies and manually make changes to the PO based on a DO.

The GUI takes the form of a web application developed using

Google’s Web Toolkit (GWT) and the Jena API used to work with

RDF data.

In the following sections, I will briefly talk on similar approaches,

the process of mapping ontologies, and then expand on the GUI’s

details including implementation, features, some challenges

encountered in the development process. Finally, I give an update

on the current status and recommendations for future work on this

project

2. RELATED WORK
D2R Map [2] is another project that takes advantage of the high

amount of data stored in RDBs and tries to link it to DO. In its

Starting in version 0.4 released on November 2007, they make

available a J2EE web application that lets one traverse the

contents of the RDB by navigating through the RDF data in a

regular HTML atmosphere. As for mapping, the authors state that

subsisting names in the generated RDF model from the RDB with

names in a DO could be done, yet, it is unclear if this is meant to

be an automatic or manual process.

In addition, Protégé [10] offers a rich environment for ontology

visualization and management; it is capable of merging ontologies

based on different parameters, so that a new ontology is produced

that could be the result of merging a PO with a DO.

A recurrent problem with both of these systems goes into

ontology mapping which is a field by itself and where different

approaches are taken to increase the accuracy of links between

different ontologies.

3. ONTOLOGY MAPPING
There are many approaches towards matching two or more

different ontologies, [7] alone lists 35 of the most distinctive

works. So what exactly does matching mean? What is the core

problem in such process? Ontology mapping can take three

different forms, thus, take a different meaning for each [3]; for our

case, we are concerned with ontology mapping between an

integrated global ontology and a local ontology. For this case,

mapping means linking concepts found in one ontology into a

view or query over other ontologies.

Some strategies for mapping tools include: lexical similarity of the

terms to match, heuristics and machine learning. It is also

interesting to note that most require user interaction in order to

confirm or adjust the output of these tools.

In our project we are currently at the stage where we can start

testing with different approaches to map the PO with an existing

DO, based on the latest code, a user can visualize the PO in a tree

form (listing of classes, object properties and data properties) and

next to it visualize a DO, based on this side by side placement a

user/administrator could look at the PO resources and modify

them according to the vocabulary in the DO.

Visualization can play a key role in the manual mapping process;

in the average and worst case scenario an automatic ontology

mapper will not produce entirely accurate mapping results and

these corrections or remaining links to be added will be done by

administrator. If he/she can visualize such ontologies and be able

to interact with their resources, the mapping process will take a

less daunting task. Some options to be considered are included in

[8] and [6].

4. USER INTERFACE DETAILS
As mentioned earlier, in order to create the PO, Ultrawrap takes

information from the data dictionary to produce the ontology with

all of the data in the schema, thus, the first requirement involved

creating a way to have the user select which parts of the schema

he/she wanted to export and make visible via the PO. The second

thing required was a way to have the user edit the names in the

PO since Foreign Keys (FK) between two tables can be exported

with a name that concatenates the FK names to show a

relationship. As a final requirement, we needed a way to map the

two ontologies (PO & DO).

We have decided to take the approach of a web application using

GWT, a set of tools that aids in the creation of JavaScript front-

end applications using Java. Using this framework reduces the

learning curve on new web technologies given that one can

develop directly in Java, furthermore, it provides simple RPC

mechanisms that are heavily used in our code and full

compatibility with a wide array of browsers. And, as for aesthetics

of the application, GWT makes it easy to divide such work so that

everything can be easily managed through CSS and not affect the

Java code for the application. Moreover, the Jena API is used in

the modules where we need to read and parse the ontologies (in

RDF format), and the JDBC library is used for database

connectivity.

Below in Figure 1, a sequence diagram is shown with the use case

of someone using the application from start to end based on

current implementation, it is worth noting that the

UltrawrapCompile component does multiple tasks in order to

provide the PO, for further reference the user is encouraged to

read [11]. Also, the loop overlay represents the iterative process

and administrator can take in mapping his/her PO.

.

Figure 1. Sequence Diagram for GUI

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

5. IMPLEMENTATION
By using GWT we are given access to an extensive library to

widgets and functionality that alone would have taken a greater

amount of time to code. From this foundation it was possible to

extend the application based on the changing requirements for the

GUI without much effort. However, there are elements of GWT

that have an impact on functionality that are not described very

well, such the case of Standard and Quirks mode; two modes an

application can take, for which certain widgets only work on a

particular mode and can have “weird” behavior if used in alternate

mode.

Figure 2. Initial input screen

As part of the workflow, that we have implemented, a user is first

required to input information necessary to connect to a RDB as

well as information required to build PO; the above figure lists the

fields needed to process the PO.

Figure 3. Main view showing the three panels

After going through the steps outlined in Figure 1 (sequence

diagram), a user will be presented with a view similar to that of

Figure 3, we see three vertical panels, from left to right; the first

panel represents the full schema retrieved from the data

dictionary, the middle panel represents the PO and the third is

showing a DO (FOAF for this example). In the following

subsections I will explain the steps and data structures involved in

producing each of the panels.

5.1 Schema Panel
Even before this or any of the other panels are displayed, the user

is prompted to enter information on the database connection

(server, port, database name, etc) and on the ontology to be

created (namespace, output file name, etc.). Thereafter, a RPC is

made in order to make a connection to the database; after a

successful connection using JDBC the schema is extracted by

creating a single query that uses subqueries in order to retrieve in

a single stream the results of a table, column, PK and FK

columns. We use a single query to avoid network latency in the

case the database is not in localhost and located elsewhere.

From the result of the query, we iterate over the tuples (number of

tuples should match the number of columns in the database) and

save them in the data structure shown in Figure 4, a process that

takes O(N) where N is the number of columns.

Figure 4. Data structure used to store schema information

This data structure is returned as a result of the initial RPC back

to the client from which the GUI will build a tree. An interesting

feature of the built tree is its O(1) modification time whenever a

user checks or unchecks a box (include or not include attribute in

the PO); this is achieved by means of the index access that we

have to the elements of the tree and the data structure’s “include”

field.

5.2 PO Panel
Once a user goes through the filtering process in the previous

panel the data structure is sent back to the server with the

finalized selection. This data structure is then traversed and used

to build the four SQL queries needed for the UltrawrapCompile

module that will filter out the tables and attributes not selected by

the user. These four queries are then sent to the UltrawrapCompile

which uses them in creating the PO and returns that as a result.

The PO is read and we extract the classes, object and data

properties and return these three as lists back to the client GUI

which will display them in this middle panel.

From this moment, the user can click on any of the nodes in the

tree (containing resources from the RDF model) to change names;

this allows a 1:1 mapping between a current PO term and a user

generated name substitution. These changes will be stored in a

HashMap and will also be updated on the tree. Once finished, the

user can click a button to save changes, this will send the

HashMap to the server so that it can be traversed and serialized to

disk under the same filename that was specified from start

concatenated with the “.changes: suffix. This file will serve as a

reference at runtime whenever a user issues SPARQL queries;

he/she will be able to now address the new field names as

opposed to the old fields initially generated as part in the PO.

5.3 DO Panel
This panel lets a user introduce a URL that points to a DO in RDF

format. An InputStream will be generated from the URL and used

in conjunction with the Jena API to navigate and extract the

classes, object and data properties. Once the RPC returns, the

same procedure is followed from the previous panel in order to

produce the tree.

The following Figure shows the structure of the project

concerning the GUI development:

Figure 5. Package structure for GUI module

6. CHALLENGES
One of the first anticipated problems came with developing the

wrappers for individual database vendors, we initially started with

MySQL and later developed the wrapper for SQL Server which

uses a different SQL syntax and when traversing a ResultSet only

works with FWD cursors. This last constraint not present in

MySQL allowed us to have a cursor that could go forward and if

necessary back up to the previous row in the ResultSet; this type

of cursor available in MySQL let us group attributes by table

when storing into our data structure, and we would need to back

up whenever a new table was detected. For future reference, an

alternate approach could involve the use of two simultaneous

cursors on same ResultSet, one serving as a scout, and the other as

the actual cursor pointing to the data to be saved.

Any future expansions should be handled by adding an extra class

with the specific connection and SQL syntax in building SQL

queries. In regards to the process building SQL queries, we ran

into problems when testing the constructed queries and verifying

their correctness. The main problem was to efficiently remove the

tables or attributes the user had not selected from the schema (ex.

those fields he/she did not want to make public). Simply using a

WHERE clause and grouping expressions via parenthesis does not

evaluate as we had expected, as a proposed solution we are now

making use of a UNION to progressively include those items the

user did select. We argue that since this is only done once it will

not have a big impact on performance, but there is room for query

manipulation to increase efficiency in selecting those properties to

be included.

In regards to GWT, it takes some time to make all widgets behave

as desired, as most are nested inside other widgets, thus, child

widgets inherit properties from parent widgets (alignment,

dimensions, etc).

7. CONCLUSION & FUTURE WORK
The functionality described in this report is coded and has been

checked in to the CVS repository at atol.csres.utexas.edu. The

project has successfully accomplished the first two requirements

mentioned in the GUI details section and is at a stage where the

third and final requirement can be implemented in a short amount

of time, depending on how we wish to change the visualization of

ontologies and manage the mapping of the PO with DO.

There is further work that needs to be performed before this code

goes into production and includes: Validation of fields where user

inputs information, inclusion of specific error messages on error

by system or user (currently only showing generic error

messages). Development of further use cases to check alternate

actions a user may take in using the Ultrawrap system interface,

thus, checking for potential errors.

Finally, as mentioned earlier, this work has implemented the logic

and functionality of the GUI, there has not been little effort on the

aesthetics of the web application, however, GWT makes it easy to

change the visual aspect of application with the use of CSS. Also,

the application has grown very fast, and the client code might

need to make use of the UBinder framework, it helps in code

reusability and maintenance especially of large projects.

8. ACKNOWLEDGEMENTS
I want to thank Dr. Miranker for suggesting this line of work on

the Semantic Web and Juan Sequeda for his guidance on the

Semantic Web and Ultrawrap

9. REFERENCES
[1] Abadi, D. Marcus, A. Madden, S. and Hollenbach, K.

Scalable Semantic Web Data Management Using Vertical

Partitioning. In Proc. VLDB, 2007.

[2] Bizer, C. Cyganiak, R. D2R Server - Publishing Relational
Databases on the Semantic Web. In Proceedings of the

International Semantic Web Conference (ISWC). 2003.

[3] Choi, N. Song, I.Y. and Han, H. A survey on ontology
mapping. SIGMOD Rec., 35(3):34–41, 2006.

[4] FOAF Vocabulary Specification 0.97. 2010. Retrieved May

13, 2010 from the University of Texas at Austin

Libraries:http://xmlns.com/foaf/spec/

[5] gwt-graph, Retrieved May 13, 2010 from the University of

Texas at Austin Libraries: http://code.google.com/p/gwt-

graph/

[6] Harris, S. and Gibbins, N. 3store: Efficient bulk RDF
storage. In In Proc. of PSSS’03, pages 1–15, 2003.

[7] Kalfoglou Y. and Schorlemmer M. Ontology mapping: the

state of the art. The Knowledge Engineering Review,

18(1):1–31, 2003.

[8] Katifori, A. Halatsis, C. Lepouras, G. Vassilakis, C. and
Giannopoulou, E. 2007. Ontology visualization methods a

survey. ACM Comput. Surv. 39, 4, 1–43.

[9] OpenStreetMap, Retrieved May 13, 2010 from the

University of Texas at Austin Libraries:

http://www.openstreetmap.org/

[10] protege, Stanford Center for Biomedical Informatics
Research. Retrieved May 13, 2010 from the University of

Texas at Austin Libraries: http://protege.stanford.edu

[11] Sequeda, J F. Depena, R. Miranker, D. (2009) Ultrawrap:

Using SQL Views for RDB2RDF. Poster in the 8th

International Semantic Web Conference

